metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ömer Çelik,^a* Semra Ide,^a Mustafa Kurt^b and Şenay Yurdakul^c

^aDepartment of Engineering Physics, Hacettepe University, Beytepe, 06800 Ankara, Turkey, ^bKırşehir Science and Arts Faculty, Department of Physics, Gazi University, 40100 Kırşehir, Turkey, and ^cScience and Arts Faculty, Department of Physics, Gazi University, 06500 Ankara, Turkey

Correspondence e-mail: ocelik@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.006 Å R factor = 0.040 wR factor = 0.100 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis(phthalazine)zinc(II)

In the title compound, $[ZnCl_2(C_8H_6N_2)_2]$, the Zn^{II} atom is coordinated in a distorted tetrahedral environment by two Cl atoms and two N atoms from the phthalazine ligands. There is an intramolecular $C-H\cdots N$ interaction between the phthalazine ligands.

Comment

Phthalazine is a diazanaphthalene molecule with two adjacent N atoms and is also known as 2,3-benzodiazine. Phthalazines, like the other members of the isomeric benzodiazine series, have found wide application as therapeutic agents. At the same time, they are widely used in industry and pharmaceutical chemistry as intermediates in the syntheses of antimalarial drugs (Silva *et al.*, 1995; Tsoungas & Searcey, 2001, Sugihara *et al.*, 2000; Napoletano *et al.*, 2000; Sivakumar *et al.*, 2002). Various phthalazine compounds offer strong protection against acrolein-mediated toxicity in isolated hepatocytes (Burcham *et al.*, 2002).

The Zn atom in the title compound, (I), is coordinated tetrahedrally by two Cl atoms and two N atoms of the phthalazine ligands (Fig. 1 and Table 1). The Cl_2N_2 donor set defines a distorted tetrahedron, with angles ranging from 103.8 (1) to 114.96 (5)°. The range of these bond angles is

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 1 June 2004 Accepted 12 July 2004 Online 17 July 2004

comparable to those reported in other compounds: ZnCl₂(2benzyl-1H benzimidazole)₂, 103.32 (7)–116.67 (7)° (Bei et al., 2001); $ZnCl_2(5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine)_2$, 102.09 (9)–117.54 (4)° (Salas et al., 1994); and ZnCl₂(purine)₂, 99.9 (1)-113.7 (1)° (Laity & Taylor, 1995).

The Zn-Cl bond distances of 2.223 (1) and 2.229 (1) Å are nearly equal to the corresponding distances reported for other compounds, viz. 2.229 (2) Å in ZnCl₂(purine)₂ (Laity & Taylor, 1995), 2.224 (1) Å in ZnCl₂(5,7-dimethyl-1,2,4triazolo[1,5-a]pyrimidine)₂ (Salas et al., 1994), 2.212 (4) Å in ZnCl₂(2,9-dimethyl-1,10-phenanthroline) (Preston & Kennard, 1969) and 2.209 (3) Å in ZnCl₂(4-vinylpyridine)₂ (Steffen & Palenik, 1977), but shorter than the value of 2.255 (1) Å in ZnCl₂(1-[5,6-dimethylbenzimidazolyl]-3-benzimidazolyl-2-thiapropane) (Matthews et al., 1998).

The Zn-N bond distances of 2.038 (3) (Zn-N1) and 2.068 (3) Å (Zn-N3) may be compared to the reported average values of 2.039 (3) Å in ZnCl₂(5,7-dimethyl-1,2,4triazolo[1,5-a]) (Bei et al., 2001), 2.05 (1) Å in ZnCl₂(1methyltetrazole)₂ (Baenziger & Schultz, 1971), 2.059 (3) A in ZnCl₂(1-methylcytosine)₂ (Beauchamp, 1984), 2.011 (9) Å in $ZnBr_2(benzimidazole)_2$ (Sahin *et al.*, 2002) and 2.027 (2) Å in ZnCl₂([1-dimethyl-benzimidazolyl]-3-benzimidazolyl-2-thiapropane) (Matthews et al., 1998). The Zn-N bond lengths are nearly equal to those of 2.035 (6) and 2.048 (6) Å observed in ZnBr₂(phthalazine)₂ (Celik *et al.*, 2004).

The dihedral angle between the least-squares planes through the phthalazine ligands is $4.34(7)^{\circ}$. In the crystal structure, individual molecules are loosely associated into pairs via weak C-H···Cl interactions that occur between centrosymmetric pairs (Table 2, Fig. 2). In addition, there is a

short intramolecular C8-H6...N4 hydrogen-bonding interaction.

Experimental

All chemicals were reagent grade (Sigma) and were used without further purification. The title compound was obtained by addition of phthalazine (261 mg, 2 mmol) to a saturated solution of $ZnCl_2$ (136 mg, 1 mmol) in hot ethanol. The mixture was allowed to stand for several weeks, and crystals of the title compound were deposited. Elemental analysis (found/calculated): C 48.30/48.48, H 3.05/3.03, N 14.85/14.14%.

Crystal data

	2
$[ZnCl_2(C_8H_6N_2)_2]$	$D_x = 1.638 \text{ Mg m}^{-3}$
$M_r = 396.6$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 7.499 (1) Å	reflections
b = 14.525 (2) Å	$\theta = 2.8-26.3^{\circ}$
c = 15.049 (1) Å	$\mu = 1.86 \text{ mm}^{-1}$
$\beta = 101.15 \ (4)^{\circ}$	T = 293 (2) K
$V = 1608.1 (4) \text{ Å}^3$	Prism, colourless
Z = 4	$0.4 \times 0.3 \times 0.2 \text{ mm}$
Data collection	

 $R_{\rm int} = 0.04$

 $\theta_{\rm max} = 26.3^\circ$ $h = -9 \rightarrow 9$

 $k=0\rightarrow 18$ $l=0\rightarrow 18$

3 standard reflections

frequency: 120 min

intensity decay: 0.1%

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.503, \ T_{\max} = 0.688$ 3384 measured reflections 3258 independent reflections 1895 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0725P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 2.0204P]
$wR(F^2) = 0.100$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} = 0.001$
3258 reflections	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Zn-N1 Zn-N3	2.038(3) 2.068(3)	Zn-Cl2 Zn-Cl1	2.223(1) 2.229(1)
211-113	2.008 (5)	Zii-Cii	2.229 (1)
N1-Zn-N3	108.58 (13)	N1-Zn-Cl1	107.43 (10)
N1-Zn-Cl2	114.65 (10)	N3-Zn-Cl1	106.98 (10)
N3–Zn–Cl2	103.80 (10)	Cl2-Zn-Cl1	114.96 (5)
N1-Zn-N3-N4	-7.5 (3)	N3-Zn-N1-N2	-173.4 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C8-H6···N4	0.93	2.43	3.185 (5)	139
$C6-H5\cdots Cl1^i$	0.93	2.78	3.637 (5)	153

Symmetry code: (i) 1 - x, 2 - y, 1 - z.

H atoms were included in the riding-model approximation, with $C-H = 0.93 \text{ Å and with } U_{iso}(H) = 1.2U_{eq}(C).$

metal-organic papers

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1993); cell refinement: *CAD-4 EXPRESS*; data reduction: *CAD-4 EXPRESS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97 (Sheldrick, 1997).

References

- Baenziger, N. C. & Schultz, R. J. (1971). Inorg. Chem. 10, 661-667.
- Beauchamp, A. L. (1984). Inorg. Chim. Acta, 91, 33-38.
- Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Razak, I. A., Shanmuga Sundara Raj, S. & Fun, H.-K. (2001). Acta Cryst. C57, 45–46.
- Burcham, P. C., Kaminskas, L. M., Fontaine, F. R., Petersen, D. R. & Pyke, S. M. (2002). *Toxicology*, 181–182, 229–236.
- Çelik, Ö., İde, S., Kurt, M. & Yurdakul, Ş. (2004). Acta Cryst. E60, m424-m425.
- Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Laity, H. L. & Taylor, M. R. (1995). Acta Cryst. C51, 1791-1793.
- Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hill, S. M. & Lockhart, J. C. (1998). *Inorg. Chem.* **37**, 199–207.
- Napoletano, M., Norcini, G., Pellacini, F., Marchini, F., Morazzoni, G., Fattori, R., Ferlenga, P. & Pradella, L. (2000). *Biol. Med. Chem. Lett.* **12**, 5–8.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956–1961.
- Salas, J. M., Romero, M. A. & Rahmani, A. (1994). *Acta Cryst.* C50, 510–512. Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of
- Göttingen, Germany.
- Silva, M. A. V. R., Matos, M. A. R. & Morais, V. M. F. (1995). J. Chem. Soc. Faraday Trans. pp. 1907–1910.
- Sivakumar, R., Gnanasam, S. K., Ramachandran, S. & Leonard, J. T. (2002). *Eur. J. Med. Chem.* 37, 793–801.
- Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.
- Sugihara, K., Katsuma, Y., Kitamura, S., Ohta, S., Fujitani, M. & Shintani, H. (2000). Comput. Biochem. Physiol. C, 126, 53–60.
- Şahin, E., İde, S., Kurt, M. & Yurdakul, Ş. (2002). J. Mol. Struct. 616, 259-264.
- Tsoungas, P. G. & Searcey, M. (2001). Tetrahedron Lett. 42, 6589–6592.